Fractality and entropic scaling in the chromosomal distribution of conserved noncoding elements in the human genome.
نویسندگان
چکیده
Conserved non-coding elements (CNEs) are defined using various degrees of sequence identity and thresholds of minimal length. Their conservation frequently exceeds the one observed for protein-coding sequences. We explored the chromosomal distribution of different classes of CNEs in the human genome. We employed two methodologies: the scaling of block entropy and box-counting, with the aim to assess fractal characteristics of different CNE datasets. Both approaches converged to the conclusion that well-developed fractality is characteristic of elements that are either extremely conserved between species or are of ancient origin, i.e. conserved between distant organisms across evolution. Given that CNEs are often clustered around genes, we verified by appropriate gene masking that fractal-like patterns emerge even when elements found in proximity or inside genes are excluded. An evolutionary scenario is proposed, involving genomic events that might account for fractal distribution of CNEs in the human genome as indicated through numerical simulations.
منابع مشابه
A Study of Fractality and Long-Range Order in the Distribution of Transposable Elements in Eukaryotic Genomes Using the Scaling Properties of Block Entropy and Box-Counting
Repeats or Transposable Elements (TEs) are highly repeated sequence stretches, present in virtually all eukaryotic genomes. We explore the distribution of representative TEs from all major classes in entire chromosomes across various organisms. We employ two complementary approaches, the scaling of block entropy and box-counting. Both converge to the conclusion that well-developed fractality is...
متن کاملConserved Noncoding Elements Follow Power-Law-Like Distributions in Several Genomes as a Result of Genome Dynamics
Conserved, ultraconserved and other classes of constrained elements (collectively referred as CNEs here), identified by comparative genomics in a wide variety of genomes, are non-randomly distributed across chromosomes. These elements are defined using various degrees of conservation between organisms and several thresholds of minimal length. We here investigate the chromosomal distribution of ...
متن کاملWidely distributed noncoding purifying selection in the human genome.
It is widely assumed that human noncoding sequences comprise a substantial reservoir for functional variants impacting gene regulation and other chromosomal processes. Evolutionarily conserved noncoding sequences (CNSs) in the human genome have attracted considerable attention for their potential to simplify the search for functional elements and phenotypically important human alleles. A major ...
متن کاملInterpreting mammalian evolution using Fugu genome comparisons.
Recently, it has been shown that a significant number of evolutionarily conserved human-Fugu noncoding elements function as tissue-specific transcriptional enhancers in vivo, suggesting that distant comparisons are capable of identifying a particular class of regulatory elements. We therefore hypothesized that by juxtaposing human/Fugu and human/mouse conservation patterns we can define conserv...
متن کاملMicroRNAs as Immune Regulators of Inflammation in Children with Epilepsy
Epilepsy is a chronic clinical syndrome of brain function which is caused by abnormal discharge of neurons. MicroRNAs (MiRNAs) are small noncoding RNAs which act post transcriptionally to regulate negatively protein levels. They affect neuroinflammatory signaling, glial and neuronal structure and function, neurogenesis, cell death, and other processes linked to epileptogenesis. The aim of this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 584 2 شماره
صفحات -
تاریخ انتشار 2016